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Abstract

I study how lenders’ access to the information in borrowers’ payment data affects

financial stability and welfare. When lenders can infer more about borrower quality,

they are able to discontinue investment projects with low pledgeable returns. Doing so

harms borrowers whose projects have high non-pledgeable returns. By offering privacy,

a central bank digital currency (CBDC) would facilitate risk-sharing between borrowers

and lenders. At the same time, however, a private means of payment like CBDC will

affect equilibrium interest rates and banks’ portfolio choices. I show that privacy leads

banks to hold more liquid asset portfolios and thereby increases financial stability. In

equilibrium, borrowers with non-pledgeable returns benefit from privacy in payments,

while lenders are worse off. The central bank can balance some of these effects by

providing information back to lenders.
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1 Introduction

Payment data generates valuable information and brings privacy concerns. Consumers’

payment histories reveal their preferences (Garratt and Van Oordt (2021)), and banks can

use their digital footprints to predict their default risk (Berg et al. (2020), Parlour et al.

(2022)). Borrowers may also be concerned about their private information being used against

their interests. For example, entrepreneurs who borrow from banks may worry about their

loans not being renewed based on information from payment data. As advancing computer

technology makes extracting information from payment data easier and leaves privacy more

vulnerable, the privacy issue in payments becomes more urgent. Such privacy concerns create

a potential role for a more anonymous form of payment that keeps the users’ information

private. In response, many central banks are actively considering offering central bank digital

currency (CBDC), which could fulfill such privacy needs. Compared with cash, it could be

widely and conveniently used for transactions in large amounts. The payment information

would also accrue to the central bank, which has no incentive for making profits. As Lagarde

(2018) stated:

“This (central bank digital) currency could satisfy public policy goals, such as (i) finan-

cial inclusion, (ii) security and consumer protection; and to provide what the private sector

cannot: (iii) privacy in payments.”1

However, anonymous forms of payment may adversely affect banks. As cash usage has

declined, banks handle the majority of payment activities in the economy. These activities

create information that is useful for monitoring loans and managing assets. Bringing in

another widely used payment option like CBDC may reduce the information available in the

current banking system, a concern expressed in the European Central Bank (ECB)’s report:

“If banks decrease their role in deposit-taking and intervene less in the routing of payment

instructions, they might have less information about clients, which, in turn, would harm their

risk assessment capacity.”2

Despite this concern, the macroeconomic implications of such information loss are unclear.

In this paper, I show how a privacy-preserving payment option, which serves as an outside

option for borrowers and reduces banks’ ability to acquire information, impacts the lending

market through bank’s portfolio choices, financial stability, and welfare.

In this paper, I construct a model in which a group of entrepreneurs have heterogeneous

incentives for privacy. The traditional informative payment option (which I call ‘debit card

1 In IMF speech, Winds of Change: The Case for New Digital Currency, 2018
2 European Central Bank (2020)
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payment’) cannot keep their production information private from the bank. I then introduce

a new form of payment which I call CBDC. This new form of payment does not immedi-

ately reveal the entrepreneurs’ production information to the bank. I show that introducing

CBDC facilitates risk-sharing between entrepreneurs and the bank: Entrepreneurs with high

privacy incentives would switch to CBDC, leaving the bank with less information about these

borrowers and bearing more risk. The increased uncertainty changes the bank’s desired com-

position of assets between loans and liquid reserves. In particular, the higher risk in lending

to borrowers who use the anonymous payment method (CBDC) leads banks to charge them

a higher interest rate and results in lower returns to the banks in equilibrium. As a result,

the bank holds a more liquid portfolio, which results in a lower probability of experiencing a

liquidity shortage. Thus, the banks are more stable. In terms of welfare, introducing CBDC

generates a welfare tradeoff between borrowers and lenders. Depositors’ welfare decreases

due to lower investment returns. Entrepreneurs’ welfare increases, even for those who value

privacy less and continue to reveal information to banks.

I connect the bank’s asset and liability sides to analyze the impact of anonymity. On its

liability side, the bank faces aggregate uncertainty in liquidity demand by depositors. On

its liability side, the bank makes a portfolio choice that balances the possibility of a liquidity

shortage against the higher investment return, in the spirit of Champ et al. (1996) and the

more recent work of Kim and Kwon (2023). What is more, I introduce private information

and risky investments on the bank’s asset side. Banks lend to borrowers (entrepreneurs) who

demand funds to make production, and there are two means of payment for entrepreneurs

to choose from. Entrepreneurs have private information about their production activities

and the incentive to keep such information private: They generate non-pledgeable benefits if

their investments are funded without being interrupted by the bank. This feature is similar

to Aghion and Bolton (1992), in which the borrowers value some important variables that

cannot be verified or written in the contract. For example, if the production is terminated

halfway, it hurts the entrepreneur’s reputation; or the entrepreneur values the experience

of producing even though the project fails eventually. On the other hand, competitive

banks rely on the payment information to better monitor the loans. They can observe the

return before the investment matures if the entrepreneurs use the debit card payment. They

maximize depositors’ utilities and can terminate unprofitable projects to lower lending risks

and avoid costly management. In the absence of CBDC, banks that have limited commitment

can fully observe the loan returns and only continue to fund profitable loans, but at the cost

of borrowers’ privacy gains.

When the anonymous CBDC is introduced, entrepreneurs can choose between the debit

card and CBDC payment options in their production activities. The optimal choice depends
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critically on loan rates and on the entrepreneur’s privacy gains. CBDC serves as a com-

mitment device that allows the borrowers to preserve privacy gains. However, this causes

information loss for banks, which cannot acquire the production information in time: Banks

cannot observe the CBDC users’ investment return before it matures. In addition, this may

contribute to a higher management cost for banks. This management cost, which relies on

the aggregate information available in the banking system, can be thought of as detecting

borrowers’ misbehavior. This assumption captures the ECB’s concern that anonymity may

deteriorate bank assets. As a result, the CBDC payment users’ loan rate will be higher. This

result holds even when this management cost is the same for both payment options. In equi-

librium, only entrepreneurs with high privacy incentives will use CBDC, while others stick

to the informative debit payment. The information loss from anonymous payment facilitates

risk-sharing with additional management costs for banks. It leads to a decrease in aggregate

lending and a lower investment return at the equilibrium, in which both payment options are

active. Banks optimally chooses a more liquid investment portfolio, which eventually leads

to banks’ less likely to experience liquidity shortages. Thus, banks are more stable despite

being less informative about the loans in time. In addition, the debit payment users’ loan

rate decreases as the returns from both payment users should be equal at the equilibrium.

Compared to no CBDC case, entrepreneurs who do not value privacy much can also benefit

from the introduction of the anonymous CBDC payment, due to the decreased loan rate

when using the traditional debit payment method.

Lastly, I discuss the potential role of the central bank in dealing with information accrued

in the CBDC payment option. The central bank issues digital currency and naturally has

the advantage of accumulating information. The CBDC loan rate can be a potential policy

tool for the central bank that could indirectly influence banks’ portfolio choice and stability.

The central bank could also reduce borrowing costs by lowering banks’ management costs.

However, this may not unambiguously improve the welfare of borrowers because the loan

rates interact and can move in the opposite direction.

Literature Review Many recent studies focus on privacy and the use of customers’

data. For example, Garratt and Van Oordt (2021) study how the customers value privacy

because they would face less price discrimination. Lee and Garratt (2021) show that payment

competition leads to the data monopolist, while anonymity preserves the competitive market

structure and improves customers’ welfare. In another paper, Kang (2021) shows multiple

equilibria exist when the seller can profit from purchasing the consumers’ private informa-

tion and predicting their preferences. In all these papers, individuals favor anonymity for

privacy concerns since they worry their information is used against their benefit, either by

the transaction’s counterparty or the third party. There is a similar concern in my model. If
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it acquires the information early, the bank values the entrepreneurs’ private information and

can take advantage of it. On the other hand, the entrepreneurs have privacy incentive that

conflicts with the bank. This structure is similar to Aghion and Bolton (1992) and Hart and

Moore (1998), who discussed the incomplete contract between a penniless entrepreneur and

a wealthy investor. In my model, whether banks can or cannot acquire the information to

stop funding unprofitable projects depends on the means of payment options. This difference

gives rise to the different loan rates for entrepreneurs using these two payment options.

There is also a fast-growing literature on CBDC’s potential impact on monetary policy

and financial system from different perspectives. For example, the welfare effect of CBDC

competing with cash and credit like Monnet et al. (2021) and Keister and Sanches (2023);

the crowding in effect when banks have market power Chiu et al. (2023). For banking

stability, there is a concern for CBDC’s disintermediation effect that it may crowd out bank

deposits like in Piazzesi and Schneider (2020), Bindseil (2020) and Gross and Schiller (2021).

CBDC may also provide flight-to-safety and trigger bank runs as in Williamson (2021).

Fernández-Villaverde et al. (2021) discuss the potential of having a central bank deposit

monopolist, deterring bank runs. In addition, Keister and Monnet (2020) discussed the

information perspective of CBDC on bank stability. In their work, the account-based CBDC

provides additional information to the central bank so that bank runs can be detected and

intervened early. Compared to the stability research above, I focus on an anonymous CBDC’s

potential impact from information loss. The anonymous payment diverts information away

from banks, resulting in a new perspective in a bank’s portfolio choice: information loss

contributes to choosing a more liquid portfolio when anonymous and informative payment

options coexist.

The risk-sharing mechanism is also related to the ‘Hirshleifer effect’ as Hirshleifer (1971)

and more recent works like Andolfatto et al. (2014) and Izumi (2021). In Izumi (2021),

opacity in banks’ asset values provides insurance to depositors that mitigates run incentives.

Andolfatto et al. (2014) discuss the regulator’s optimal disclosure policy about asset quality

in markets. Nondisclosure facilitates risk-sharing when the regulator lacks commitment

to reveal asset quality information. In my work, it is the competitive banks that lack

commitment and prevent risk-sharing that could be socially desirable. The anonymous

CBDC payment option serves as a commitment device that brings the risk-sharing back by

delaying information acquisition. More importantly, I show the information loss’s impact on

stability: The bank responds by holding a more liquid portfolio so the banks do not become

more unstable.

The rest of the paper is organized as follows. In section 2, I describe the model, show the

borrower and bank’s problems, and discuss the socially optimal solution. In section 3, I show
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the equilibrium without CBDC, in which the representative bank does not value borrowers’

privacy gains. Then in section 4, I introduce the CBDC payment option and show that the

fraction of CBDC borrowers is endogenously determined. I compare the stability and welfare

with and without anonymous CBDC. Section 5 discusses the central bank’s potential role in

mitigating banks’ information loss. Section 6 concludes the findings.

2 The Model

2.1 Entrepreneurs

There are three periods t = 0, 1, 2. At period 0, a continuum of penniless entrepreneurs with

measure one needs funds to produce. All entrepreneurs consume at t = 2 and have the same

production technology: For each unit of good invested at t = 0, the investment generates R

units with probability δ at t = 2; and 0 otherwise. An individual entrepreneur i chooses the

production quantity qi under a linear disutility L(qi) = −qi. The entrepreneur consumes cie

and enjoys some non-transferable private benefit bi from production. The entrepreneur i has

the following quasi-linear utility function:

u(cie, q
i) = 2

√
cie − qi + Ii · bi

Where Ii ∈ {0, 1} is the indicator for acquiring the private benefit. In particular, the en-

trepreneur gets bi only if the production activity is successfully funded through and matures

at t = 2 (Ii = 1). If the production is terminated at t = 1, there will be no gains (Ii = 0).

This non-transferable benefit provides the incentive for privacy, i.e., to keep the investment

information private during production. For simplicity, I assume the private benefit is uni-

formly distributed across all borrowers as bi ∼ U(0, 1).

The entrepreneur’s production process involves transactions such as paying for work-

ers and purchasing raw materials. The entrepreneur can ‘learn by doing’ and discover his

project’s return privately at t = 1 based on information underneath these transactions. For

example, a car manufacturer may realize the profit at t = 2 would be low if the bills for

operating the auto assembly line (paying for workers, buying machines) remain high during

production at t = 1. In this economy, the entrepreneur chooses a payment option that de-

termines whether the lending bank can or cannot acquire the payment information during

production. This decision choice is similar to He et al. (2023) in which the borrowers own

the data and can decide whether to share it with lenders. In particular, an entrepreneur

can choose the informative “debit card” payment issued by the bank, enabling the bank to

observe the payment activities and thus the investment’s return at t = 1. Alternatively, he
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can use the anonymous CBDC, so the bank cannot observe the return until the investment

matures at t = 2. Depending on his choice, the entrepreneur thus faces two different loan

rates: the anonymous CBDC loan rate ρ0 (CBDC rate hereafter) and the informative debit

card payment loan rate ρ1 (debit rate hereafter).

At period 0, an entrepreneur i chooses his production level qi under the given loan rates

ρ0, ρ1. If the entrepreneur chooses to use debit card payment, he accepts ρ1 and produces

qi1 using the debit card, which allows the lending bank to observe his payment flows. In

this sense, there is no information asymmetry as the lending bank can acquire the same

information as the entrepreneur. Thus, the bank can also realize the investment return

when it is known by the entrepreneur in period 1. Importantly, the bank may terminate the

loan, i.e., Ii = 0, when the bank observes the investment is unprofitable. The entrepreneur

rationalizes this, knowing that the bank may terminate the unprofitable investments. It is

easy to see if the project’s future return will be good (with probability δ) the project is worth

continuing. However, if the project’s future will be bad, the bank may choose Ii = 0. So, we

can write the entrepreneur i’s problem as:

max
qi1

δ · 2
√

(R− ρ1) · qi1 − qi1 + δbi + (1− δ)Iibi

The FOC gives his demand for the loan as:

qi1 = δ2 · (R− ρ1) (1)

His demand depends on the given loan rate ρn, and the private benefit bi does not affect

his loan demand here. Note this equation also provides the aggregate demand for loan since

there is one unit of entrepreneurs in total. In addition, the entrepreneur’s indirect utility

has two parts: the consumption from production after paying back the loan and the private

benefit. The entrepreneur i’s utility can be expressed as:

Πi
1 = δ2 · (R− ρ1) + δbi + (1− δ)Iibi (2)

Similarly, the entrepreneur can choose the anonymous CBDC payment. If he chooses

CBDC, the entrepreneur i ensures his private benefit bi. The bank cannot observe the

production’s return at t = 1 since it cannot analyze the payment flows of the entrepreneurs.

The entrepreneur i’s problem in this case can be written as:

max
qi0

δ · 2
√

(R− ρ0) · qi0 − qi0 + bi·
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Compared with no CBDC case, the anonymous payment ensures the entrepreneur’s private

gain bi. The entrepreneur’s demand for the loan is:

qi0 = δ2 · (R− ρ0) (3)

His indirect utility as the function of the CBDC loan rate is:

Πi
0 = δ2 · (R− ρ0) + bi (4)

Importantly, an entrepreneur’s payment choice depends on his indirect utility Πi
0 and Πi

1,

which are affected by the privacy gain bi. I will show in section 3 there is a threshold b̄ such

that entrepreneurs who have high private gains with bi > b̄ will use anonymous CBDC, while

those with bi < b̄ will continue to use the debit payment.

2.2 Depositors and the Representative Bank

At t = 0, there is also a continuum of depositors with measure one; each endowed with

one unit of the single good and having the logarithmic utility function ln(c). Among the

depositors, a random fraction of π becomes impatient and needs consumption at t = 1, while

the rest are patient and want to consume in period 2. The depositors pool their resources in

the bank as in Diamond and Dybvig (1983) at t = 0, but the random variable π satisfying

π ∼ U(0, 1) will be publicly realized at the beginning of t = 1.

A competitive bank collects funds from depositors and lends them to entrepreneurs at

t = 0. A representative bank takes the loan rate ρn as given. Facing depositors’ uncertain

liquidity demand, the bank makes a portfolio choice between holding liquid cash reserves and

lending to the entrepreneurs whose projects mature at t = 2. Denote the offers to impatient

and patient depositors as c1(π) and c2(π), respectively. The bank chooses the fraction γ of

deposits to hold as a cash reserve and lends the remaining 1 − γ to entrepreneurs. When

CBDC is introduced, the bank also chooses the composition of lending θ, so that fraction

θ(1− γ) lends to debit card entrepreneurs and (1− θ)(1− γ) to CBDC entrepreneurs. Since

the uncertainty in aggregate liquidity demand only resolves at t = 1, the bank may run out

of its liquid assets at t = 1 when it meets the liquidity demand. In this paper, the bank is

defined as unstable when it runs out of cash reserves, i.e., it experiences a liquidity crisis, as

in Champ et al. (1996).

In addition, I assume the bank incurs a management cost per unit of investment for

continuing the loans at t = 2. In particular, I assume the debit card payment’s management

cost holds as a constant k̄. This cost is sufficiently small. The CBDC payment’s management
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cost is given by:

kdc = k̄ + β(1−
∫ 1

0

Ii) (5)

In which 1 −
∫ 1

0
Ii ∈ [0, 1] naturally represents the fraction of CBDC payment users. This

expression shows the CBDC payment’s management cost increases as a larger fraction of

borrowers choose CBDC payment. The interpretation is that it is more costly to manage the

less informed loans to prevent moral hazard problems. Less information may hamper the

bank’s ability to monitor and manage assets in the banking system. Banks can better know

whether a project operates well by comparing it to other projects with more information. The

bank can detect the borrowers’ misbehaving by analyzing and comparing the entrepreneurs’

payment flows. On the other hand, less information (a smaller I) on the loans and the

aggregate economy contributes to higher management costs. In addition, note that due to

management cost k, the bank would want to stop funding the investments that generate

negative returns (minus k). The entrepreneurs who use the debit card payment will not

capture privacy gain when the investment fails.

Denote the bank’s investment return as Rb0 and Rb1, corresponding to the per unit

investment return from debit and CBDC borrowing. In particular, the per unit expected

investment return from debit payment borrowers is:

Rb1 = δρ0 − Iik̄ (6)

And the per unit investment return from CBDC borrowers is:

Rb0 = δρ1 − kdc (7)

The debit rate Rb1 depends on the individual bank’s termination choice since the bank

can choose Ii when borrower i uses debit payment. Note the choice of Ii is made after

observing the future return, so Rb1 measures the expected returns. On the other hand, the

CBDC rate Rb0 depends on the aggregate level of CBDC borrowing cost kdc and is exogenous

from the bank’s perspective. This also captures the point that the bank loses information

and cannot influence the loan ex-post lending. The return Rb1 is the expected return since

the bank pools the loans together while only a fraction δ of each type generates positive

returns. As a result, the bank’s problem can be written in the following:
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max
γ,θ,c1(π),c2(π),α(π)

∫ 1

0

[π · lnc1(π) + (1− π) · lnc2(π)] · f(π)dπ

s.t. πc1(π) = α(π)γ

(1− π)c2(π) ≤ γ − α(π)γ + (1− γ)[θRb1 + (1− θ)Rb0]

0 ≤ α(π) ≤ 1

0 ≤ θ ≤ 1

The choice α(π) ∈ [0, 1] represents the fraction of cash the bank uses to pay the early

depositors. And the returns Rb1 and Rb0 are given by (6) and (7). When there is no CBDC,

I can simply impose θ = 1 so all lending is through the debit payment option.

Note the choice Ii = {0, 1} implicitly means the bank has limited commitment when

lending. In period 1, the bank acquires the production information by observing the debit

card payment flows. The bank realizes the investment return as the entrepreneurs. The

bank may terminate the loan due to the management costs: If the production return would

be R at t = 2, the bank would continue funding the investment; otherwise, the bank could

terminate the project. The debit card borrowers will also rationalize the bank is able to

terminate the project if the project is not profitable at t = 1.3

The focus of the bank’s problem is on the possibility of a liquidity shortage. Note the

bank will choose how much to pay depositors after observing the aggregate shock π so the

payments c1 and c2 is contingent on π. The bank may run out of its liquid holdings to pay

early depositors. Whether a liquidity shortage occurs depends on whether α = 1 holds. In

particular, in the appendix I show that there is a threshold π̄n such that if π < π̄n, the

depositors’ payoffs satisfy cn1(π) = cn2(π) = γn + (1− γn)Rn, and the bank has extra liquid

assets (α < 1). For π ≥ π̄n, the payoffs are cn1(π) = γn
π

and cn2(π) = (1−γn)Rn
1−π , while the

bank runs out of reserves with α = 1. In these cases, a large amount of impatient depositors

(a large π) will share the limited reserves and the bank cannot treat all depositors the same.4

Thus, the bank experiences a liquidity shortage and is unstable when the realized π > π̄n.

The optimal choice of cash reserve can be solved from the FOC of γn:

1− γn =

∫ 1

π̄n

F (π)dπ (8)

Where π̄n = 1
1+( 1

γn
−1)Rb

; and Rb = θRb1 + (1 − θ)Rb0 with CBDC, and Rb = Rb1 without.

3 To focus on the ex-ante borrowing choices, I assume the means of payment is enforceable ex-post: if the
entrepreneur chooses one payment, he immediately use it for transactions in production and cannot switch
to the other type after the loan is granted.

4 When π = π̄n, the bank chooses exactly α = 1 with c1 = c2 and is defined as no liquidity shortage.
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The term F (.) is the cumulative distribution of π. The investment return Rb can be shown

greater than one because k̄ is relatively small with δR − k̄ > 1. Lastly, note equation (8)

also implicitly provides the aggregate supply of funds, 1− γn, as a function of the loan rates

ρ0, ρ1, depending on with/without CBDC.

2.3 Timeline

The timeline in Figure 1 summarizes the environment above. At t = 1, entrepreneurs

request funds from the bank. Banks collect from depositors, choose a portfolio of loans

and liquid assets, and arrange payments for depositors. The loan rates depend on the

entrepreneur’s payment options in the production process. The debit card payment allows

the bank to see the potential return when the entrepreneur knows it at t = 1, while the CBDC

payment blocks the bank from observing this information. At the beginning of period 2, the

management costs k incurred for continuing loans. Lastly, the entrepreneurs repay the loans,

and the patient depositors withdraw.

Figure 1. Timeline

2.4 The Socially Optimal Solution

I first discuss the socially optimal solution as a benchmark for welfare comparison later. A

planner maximizes the utilities of both entrepreneurs and depositors. It sets some optimal

loan rate ρ∗ and makes a portfolio choice γ∗. Most importantly, it chooses Ii = {0, 1}
for every loan to determine whether the project can continue at period 1. The planner’s

objective function can be written as:

max
ρ∗,γ∗,Ii

∫ 1

0

[δ2(R− ρ∗) + Ii · bi]dbi +

∫ 1

0

[π · lnc1(π) + (1− π) · lnc2(π)]f(π)dπ

Subject to the constraints of the bank’s problem.
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A project may not be socially desirable even though it generates private gains for the

entrepreneur. The tradeoff emerges between borrowers (entrepreneurs) and lenders (deposi-

tors). Once the planner observes that an investment will generate zero return in period 2, it

chooses whether to continue the project in period 1. On the one hand, the entrepreneurs can

receive privacy gains, which they acquire by lasting the projects to period 2. On the other

hand, depositors (banks) benefit from terminating unprofitable projects ex-post (i.e., after

knowing the future return) and avoiding incurring additional management costs. Consider

the marginal entrepreneur j: allowing the project to continue generates marginal gain bj; the

bank generates a marginal loss k̄ on investment that transmits to the marginal welfare loss

on depositors’ expected utility. The tradeoff means it is optimal to let some projects that

generate zero return for banks continue from a social perspective. The following proposition

states this.

Proposition 1. There exists a privacy gain level b∗ > 0 such that for bi > b∗, the en-

trepreneur’s project should always be funded to maturity in period 2. When kdc = k̄, b∗ < k̄.

The social optimum is intuitive: When the privacy gain is relatively larger than the

banks’ expected costs, it is socially optimal to generate risk-sharing and let some projects

mature for privacy gains even though this incurs costs on banks. What is more, if we drop

the assumption that CBDC payment is potentially more costly to monitor, i.e., if we simply

assume kdc = k̄, then the threshold is below k̄ due to the concavity of depositors’ utilities. I

will use this threshold as an example to help with welfare comparison later.

3 Equilibrium Without CBDC

In this section, I solve the equilibrium in which only the informative debit card payment is

available to entrepreneurs. I will characterize the entrepreneur’s problem for loan demand.

Next, I solve the bank’s problem to derive the loan supply. Then I will find the equilibrium

loan rate and discuss banks stability as characterized by the probability of liquidity shortage.

3.1 Equilibrium and Bank Liquidity

To begin with, I show that a representative bank, once it observes the future investment

return, will always terminate unprofitable projects.

Lemma 1. The bank always chooses Ii = 0 at t = 1, if it observes the project i to generate

zero return at t = 2.
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This result is intuitive: From the bank’s perspective, it is always optimal to terminate

unprofitable projects so the return Rb and depositors’ utilities are higher. As a result, the

per unit return from debit payment in (6) can be simplified to:

Rb1 = δρ1 − δk̄ (9)

Note the same type of loans are pooled together, and Rb1 is the per unit investment return:

A fraction 1− δ of debit borrowers being terminated with Ii = 0, and the rest δ fraction of

projects are worth continuing and incurring cost k̄.

Meanwhile, entrepreneurs anticipate this potential termination when borrowing. How-

ever, without an outside anonymous option such as CBDC, the bank’s limited commitment

will not directly influence their borrowing amount, as shown in (1). Equating this demand

and the funds supply 1− γ, I have the market clearing condition:

1− γ = δ2(R− ρ1) (10)

In addition, I apply the uniform distribution F (π) = π and simplify (8) as:

1− γ =
1

2
− 1

2
(

1

1 + ( 1
γ
− 1)(δρ1 − δk̄)

)2 (11)

Denote the equilibrium cash reserve ratio as γ∗n and the equilibrium loan rate as ρ∗n. These

two conditions above pin down the equilibrium with {γ∗n, ρ∗n}. The following proposition

states there is a unique equilibrium with interior solutions of γ∗n and π̄n.

Proposition 2. There is a unique interior equilibrium with {γ∗n, ρ∗n} in the economy. If k̄

increases, γ∗n and π̄n increase with a more liquid bank portfolio.

Without CBDC, the competitive banking system has a unique equilibrium in which the

bank chooses a portfolio to balance the possibility of liquidity shortage against the higher

investment return. To see this, We can rewrite δρ∗n = δR− 1
δ
(1−γ∗n) and replace δρ∗n in (11),

now I can get the condition that pins down γ∗n:

1− γ∗n =
1

2
− 1

2
(

1

1 + ( 1
γ∗n
− 1)(δR− 1

δ
(1− γ∗n)−Hn)

)2 (12)

In which Hn = δk̄, capturing the management cost incurs. In the appendix, I show that

the right-hand-side (RHS) of (12) is concave and decreasing in γn. Note if γ = 1, the RHS

equals 0 with the slope smaller than minus one5 thus there is only one interior solution. The

5 Which does not depend on the assumption on the distribution of π.
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corner solution, γ = 1, is not optimal since it means the bank chooses not to lend at all.

The tradeoff in γ∗n comes from higher investment return Rb and the probability of ex-

periencing liquidity shortage. As can be seen from (8) if the realized liquidity demand π is

larger than π̄n, the bank is running out of cash reserves and is said to experience a liquidity

shortage. The marginal π̄∗n at the equilibrium naturally measures the probability of running

out of cash reserve at t = 1, which is determined by the γ∗n. A more liquid investment

portfolio leads to a lower π̄n and a more stable bank.

The proposition also shows how the changed management cost can affect bank return

and stability. If the bank’s loan becomes more costly, the bank optimally chooses a more

liquid portfolio because the investment is less attractive. This can be seen from the bank’s

return, Rb = δR− 1
δ
(1− γn)− δk̄. For any k′ > k̄, the bank’s return would decrease, which

would further contribute to a more liquid portfolio choice with higher cash reserve γ∗n by the

bank.

Note without CBDC, the individual entrepreneur’s privacy gain does not affect the equi-

librium Rb and the loan rate. Any changes in management costs only comes from profitable

projects, as captured by Hn = δk̄. In the next section, I will show how the introduction of

CBDC contributes to information loss by the bank. The anonymous payment will enforce

more risk-sharing between the entrepreneurs and the bank. The bank’s management cost

and return change due to the risk-sharing, as well as its liquidity choice and stability.

4 Equilibrium With CBDC

In this section, I introduce the anonymous CBDC payment that can substitute the infor-

mative debit card payment. The anonymous CBDC payment is a commitment tool that

ensures projects to mature. The bank must wait until t = 2 to acquire information by ob-

serving the investment return. The bank’s ability to manage the loans is affected, reflecting

more risk-sharing and a different CBDC payment management cost kdc, which will also be

endogenously determined.

4.1 Equilibrium and Choice of Payments

Firstly, entrepreneurs can choose the anonymous CBDC payment option to make trans-

fers. In this way, the anonymous CBDC payment serves as a commitment tool allowing

entrepreneurs to keep the realized return private at t = 1. Recall the privacy gain on project

i depends on Ii, i.e., the bank’s choice to terminate or not, the entrepreneurs can now com-

pare their utility gains between the traditional debit payment and this new privacy-preserving
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CBDC payment. In particular, an entrepreneur i compares (2) and (4) as mentioned in sec-

tion 2. Imposing Ii = 0 for the 1 − δ fraction of debit borrowers, we can see for given loan

rates, there is a threshold b̄ that when bi = b̄, Πi
0 = Πi

1 holds. The entrepreneurs with privacy

gains lower than b̄ will continue to choose debit payment; while those who value privacy more

(bi > b̄) will opt out to use CBDC payment. The entrepreneur on the margin with bi = b̄ is

indifferent between the payment options. This endogenous threshold b̄ is determined by the

indifference condition Πi
0 = Πi

1:

δ(ρ0 − ρ1) =
(1− δ)
δ

· b̄ (13)

Secondly, the bank now keeps a fraction θ of funds to those debit payment borrowers

while dividing 1 − θ of the loans to CBDC payment. At the equilibrium, the bank would

be indifferent between the two types of lending with Rb0 = Rb1, which can be seen from the

first order to θ. This indifference condition can be written as:

δ(ρ0 − ρ1) = (1− δ)k̄ + β(1− b̄) (14)

The first order condition of γ now becomes:

1− γ =

∫ 1

1

1+( 1γ−1)[θRb1+(1−θ)Rb0]

F (π)dπ (15)

This is similar to the case without CBDC except for changes in the expression of the bank’s

investment return. Both types of lending satisfy the supply equals demand when the market

clears.

θ(1− γ) =

∫ b̄

0

δ2(R− ρ1) · f(bi)dbi (16)

(1− θ)(1− γ) =

∫ 1

b̄

[δ2(R− ρ0)] · f(bi)dbi (17)

The first equation is the clearing condition for debit card payment users, and the second

is the clearing condition for anonymous CBDC payment users. These conditions (13) - (17)

provide the equilibrium solutions for {γ∗, ρ∗0, ρ∗1, b̄∗, θ∗}. The following proposition shows the

existence of a unique equilibrium in which both payment options are actively used.

Proposition 3. There is a unique interior equilibrium with {γ∗, ρ∗0, ρ∗1, b̄∗, θ∗} that the anony-

mous CBDC and debit card payments coexist.

The anonymous payment is attractive to those whose privacy gain is high since it is costly
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to have their projects terminated by banks. The uniqueness of the equilibrium can be shown

by a condition that pins down the equilibrium ρ∗1, similar to equation 12:

1− γ∗ =
1

2
− 1

2
(

1

1 + ( 1
γ∗
− 1)(δR− 1

δ
(1− γ∗)−Hcoe(b̄∗))

)2 (18)

In which

Hcoe(b̄
∗) ≡ (1− δ)

δ
b̄∗[1− b̄∗] + δk̄ (19)

This term Hcoe does not depend on γ or the loan rates. Intuitively, it captures banks’

total management costs. Compared to no CBDC case in which Hn = δk̄, the bank’s total

management cost now depends on the equilibrium fraction of debit/CBDC users, some of

whom their projects generate zero return at t = 2. The proposition shows at the equilibrium,

both types of lending are active. The loan rates are endogenously determined and one type

of payment cannot completely drive out the other one due to the clearing conditions for loan

rates.

To see the determinants of entrepreneurs’ choices, we can combine (13) and (14) and see

the equilibrium b̄∗ satisfies:

b̄∗ =
β + (1− δ)k̄
β + (1

δ
− 1)

(20)

Since k̄ is small (smaller than 1), we can see 1
δ
− 1 > (1− δ)k̄ holds, and the equilibrium

b̄∗ < b̂ = 1. A positive fraction of entrepreneurs with b̄∗ ≤ bi ≤ 1 chooses to use the CBDC

payment option. The management cost k̄ jointly determines this choice with the marginal

information loss β. When the cost of using CBDC payment becomes higher, the equilibrium

b̄∗ will be higher, and a larger fraction of borrowers will stick to using the debit card payment.

Proposition 4. As marginal information loss β is higher, the equilibrium management cost

k∗dc increases, and a larger fraction of borrowers will stay using the debit card payment option.

With CBDC payments, the equilibrium management cost is higher for anonymous pay-

ments because anonymity leads to information loss on the banks’ side. When the marginal

information loss is higher (bigger β), the equilibrium b̄∗ corresponds to higher equilibrium

debit card users, and it is costly to manage anonymous payment users’ loans. Note that this

model is general as it allows the management cost kdc to be endogenously determined.
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4.2 Comparison: Stability and Welfare

Now, we can compare the stability and welfare with and without CBDC cases. If we com-

pare the equilibrium condition (18) with no CBDC case’s condition (12), the difference lies

between the terms Hn and Hcoe. It can be seen:

∆H = Hn −Hcoe = (k∗dc − δk̄) · [1− b̄∗] (21)

So Hn > Hcoe, and the difference captures the additional costs the bank takes. It represents

the fraction of anonymity borrowers, 1− b̄∗, each incurs an additional expected cost k∗dc− δk̄
on the bank because the bank cannot terminate unprofitable projects. This interpretation

is easier to see if we drop the assumption that kdc is increasing in CBDC users. If, again,

we simply assume kdc = k̄ then ∆H = (1 − δ)k̄ · [1 − b̄∗]. Since the bank cannot kick out

nonprofitable projects under CBDC payment, these borrowers incur an expected loss of k̄

with probability 1 − δ. What is more, the corresponding b̄∗ = δk̄, capturing the expected

cost of using CBDC since the choice of payment option is determined before the return is

realized. The entrepreneurs with bi > δk̄ will always have their projects matured at t = 2,

similar to the planner’s solution in which there is an optimal threshold 0 < b∗ < k̄.

In this sense, CBDC is a commitment device not to reveal information. The bank is

now involved in more risk-sharing with the borrowers compared to no CBDC case, and the

lending is more costly. As a result, the bank’s investment return decreases at the equilibrium

when the less informative means of payment (CBDC) substitutes the traditional informative

one (debit card). Importantly, this leads to changes in the bank’s portfolio choice that

balances investment return and liquidity shortage. The more costly CBDC, however, does

not necessarily lead to unstable banks. The following Proposition states this.

Proposition 5. Compared with no CBDC case, the bank is more stable with γ∗ > γ∗n and

π̄ > π̄n.

When CBDC is introduced, the loans become more costly, and the CBDC rate is higher

than the debit rate, as seen from condition (14). The bank now chooses a more liquid

investment portfolio, contributing to a higher γ∗. Thus, the reserve threshold π̄ is higher in

the equilibrium, corresponding to a lower likelihood of experiencing the liquidity shortage at

t = 1. In this way, the anonymous CBDC indirectly promotes bank stability since it enforces

a more liquid portfolio when there is more risk-sharing sourced from introducing the less

informative means of payment.

Two factors lower the bank’s investment return. As discussed in the previous paragraph,

the first and most important factor is the risk-sharing CBDC users bring in. The second is
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the bank’s ability to manage its loans is hampered. This is captured by our assumption in

kdc and k∗dc > k̄ at the equilibrium, reflecting the point that monitoring the less informative

assets is harder. Both factors contribute to a more liquid portfolio because the bank responds

to information loss by balancing investment return and chances of liquidity shortage.

The impact of the privacy-preserving payment can also be viewed as an outside option

that enables the borrowers to fully capture the privacy gains, which leads to a lower aggregate

demand for loans. The following graph compares the equilibrium in the lending market

without and with CBDC payment.6 This downward shift in aggregate demand for loans

corresponds to the higher CBDC rate at the equilibrium, which can be seen from condition

(13).

Figure 2. Equilibrium in the Lending Market

The introduction of CBDC payment contributes to higher welfare for entrepreneurs. This

can be seen from the equilibrium debit card rate ρ∗1, which is lower than the no CBDC rate

ρ∗n. The debit card payment users benefit from such a lower loan rate, though they still face

the probability of loan termination. This result comes from the fact that at the equilibrium,

the aggregate demand for loans decreases due to more risk-sharing with banks. The bank’s

return is lower from entrepreneurs using CBDC payment, while the market clearing condition

enforces the return on both types of lending holds equal. As a result, the entrepreneurs using

6 δ = 0.8, R = 2, k̄ = 0.1 and β=0.4.
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debit card payments benefit from the lower loan rate even though they do not value privacy

enough. Meanwhile, the CBDC payment users are also better off because they are willing

to accept a higher loan rate ρ∗0 to preserve privacy and shift to the less informative CBDC

payment. Thus, both types of entrepreneurs are better off, and the bank depositors are

worse off because of lower investment returns from risk sharing.

Proposition 6. The equilibrium loan rate satisfies ρ∗1 < ρ∗n. Compared with no CBDC case,

entrepreneurs using both types of payment are better off; and depositors are worse off.

In sum, introducing CBDC payment favors the entrepreneurs and lowers the welfare

of depositors. The equilibrium bank returns are lower due to the risk-sharing and higher

management costs. Compared to no CBDC case, introducing anonymity CBDC brings the

welfare tradeoff between the lender (depositors) and the borrowers (entrepreneurs). However,

the impact on aggregate welfare in the economy is ambiguous and may not necessarily

coincide with the social optimal.

In addition, recall that the socially optimal solution requires for some bi > b∗ the project

should always be allowed to mature. Introducing CBDC partially solves this problem be-

cause those entrepreneurs with bi > b̄∗ choose CBDC that can hide information from the

bank. However, the social optimal b∗ coincides with b̄∗ only for specific values. Nevertheless,

compared to the no CBDC case, there are welfare gains for all entrepreneurs. In the next

section, I show that when the CBDC rate ρ0 is a policy tool that the central bank can choose,

this partial resolution and welfare improvement can also be achieved.

5 CBDC and Information: the Central Bank Perspec-

tive

5.1 CBDC Rate as A Choice Variable

It has been widely discussed that the CBDC rate can be a new policy tool for the central

bank to achieve its policy goals. In this paper’s context, the CBDC rate can balance the

tradeoff between borrowers and lenders. For instance, one can think that ρ0 is influenced

by the ability to pay interests by the central bank upon usage. Compared to the debit rate

ρ1, a policy rate ρp that replaces ρ0 provides the central bank an additional policy tool to

influence the economy. It affects the bank’s portfolio choice and also captures the role of

traditional policy rate: By choosing a higher CBDC rate ρ0, the central bank also pushes up

the equilibrium debit rate ρ1 as in (14). Thus, it discourages borrowings, and netrepreneurs’

outputs are lower. On the other hand, when the CBDC rate is sufficiently low, it makes
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investment less profitable with lower depositor welfare while the bank is more liquid. The

central bank’s objective function can be written as the following:

max
ρp

∫ π̄

0

ln(γn + (1− γn)Rb) · f(π)dπ +

∫ 1

π̄

[πln(
γn
π

) + (1− π)ln(
(1− γn)Rb

1− π
)]f(π)dπ

+ δ2(R− ρp) +Wb

s.t. 1− γ =

∫ 1

π̄

F (π)dπ

π̄ =
1

1 + ( 1
γ
− 1)Rb

Rb = δρp − kdc

In which Wb is the term7 capturing privacy gains that does not depend on ρp. The bank’s

return Rb is expressed as a function of ρp, which is implicitly determined by the clearing

condition (14). We can see the tradeoff between borrowers and lenders.

Note by choosing ρp, the welfare level can coincide with the social optimal. And when

the borrowers and lenders are not equally weighted, ρ∗p is more important to balance such

welfare tradeoff as it will be harder to achieve socially optimal when both ρ0, ρ1 are market-

based. Note the controlled CBDC rate does not influence the equilibrium CBDC users b̄∗ as

the debit rate also changes, so the relative fraction of users captured by b̄ does not change.

Lastly, ρp also has a potential role in affecting bank stability. The choice of γ, thus the

probability of liquidity shortage, is indirectly influenced by ρp.

5.2 Management Cost kdc

Another interesting point is when CBDC is introduced, the central bank naturally acquires

the information that flows outside the traditional debit payment. Whether and how the

central bank makes use of the information remains unknown.

The anonymous CBDC payment that potentially substitutes the informative payment

can lead to more risk-sharing between borrowers and lenders. The information loss may also

deteriorate the bank’s ability to manage the loans, reflecting from kdc > k̄ at the equilibrium.

Meanwhile, the CBDC is issued and managed by the central bank, which serves public goals

and has no incentive to make profits. The central bank naturally has an advantage in

managing the payment information within the digital currency payment system. This brings

in the discussion of whether and how the payment information should be managed. The

7 In particular, Wb =
∫ b̄

0
δbi +

∫ 1

b̄
bi +

∫ b̄

0
(1− δ)b̄
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implication relies on the interaction between the loan rates ρ∗0 and ρ∗1, which can respond

differently to the information loss. Importantly, managing the CBDC payment information

to lower the bank’s management cost may not necessarily be welfare-improving.

Consider that the central bank reveals all the payment information to the bank. Then, the

bank could fully acquire entrepreneurs’ payment information and observe investment returns

again. This coincides with the no CBDC case in which all investments can be terminated

at t = 1 if returns are zero. There will be no risk sharing again between the borrowers

and banks. In this sense, providing all the information to the bank, i.e., allowing banks to

observe the investment return early reveals too much information.

Another potential influence of the central bank providing the information is on the man-

agement cost kdc. Recall the CBDC management cost kdc = k̄ + β(1 − b̄), which will be

higher if more borrowers hide information from banks. The central bank may play a role

in alleviating this effect. For instance, providing information back to banks prevents moral

hazard, so the marginal information cost β is lower. Within this paper’s context, suppose

the central bank can affect the marginal information cost of the bank. This is achieved by

allowing the central bank to have a choice variable βp ∈ [0, 1] to replace the coefficient β:

kdc = k̄ + βp(1− b̄)

By choosing βp, the central bank can affect the equilibrium kdc and the fraction of CBDC

borrowers. As suggested in Proposition 4, the central bank could lower the cost kdc by

lowering βp. If βp = 0, the bank bears no additional management costs from CBDC users,

i.e., k∗dc = k̄, the model is simplified and the CBDC payment becomes only a commitment

devise to ensure borrowers receive privacy gains. If βp = 1, the central bank facilitates

risk-sharing, and borrowers capture privacy gain more easily. However, with both payments

coexisting, the changing βp and kdc may adversely affect the informative payment users. In

particular, as βp decreases, the equilibrium ρ0 decreases while the debit payment loan rate

ρ1 may decrease or increase. The following figure provides a numerical example showing the

pattern of ρ∗0 and ρ∗1 and their relation with the number of informative payment users b̄∗ at

the equilibrium. 8

8 δ = 0.8, R = 2, k̄ = 0.1 and βp ∈ [0.05, 0.5].
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Figure 3. Equilibrium Loan Rates

When βp decreases, the per loan management cost k∗dc decreases, making the CBDC

payment more attractive. The fraction of debit card payment users, b̄∗, becomes smaller. It is

less costly to lend to a CBDC entrepreneur and the CBDC rate ρ∗0 decreases. Meanwhile, the

equilibrium bank return changes and the relative attractiveness of CBDC to debit payment

may decrease or increase, captured by the difference in aggregate lending cost ∆H = (k∗dc −
k̄) · (1 − b̄∗) as in condition (21). In particular, ∆H has the extensive-intensive tradeoff:

when βp decreases, the per loan cost k∗dc decreases and the amount of CBDC users increases.

Thus, the changing βp has an ambiguous effect on the debit card rate ρ∗1. Intuitively, if βp

is sufficiently small with a low k∗dc, then the aggregate management cost Hb̄∗ also decreases

even though many entrepreneurs choose CBDC payment. The debit card payment rate ρ∗1

will thus increase; the fund supply for debit card payment users decreases relative to the

supply for CBDC users when the market clears. On the other hand, if βp is relatively high,

a decrease in βp lowers the per loan kdc. But with more CBDC users, the aggregate cost ∆H

increases. This contributes to lower equilibrium return, and the ρ∗1 is lower when the market

clears.

This result suggests an externality in managing the CBDC payment. When there is no

CBDC, a decrease in the bank’s management cost k̄ contributes to higher bank returns and

lower loan rates. The gains from lowering costs always benefit the bank depositors and the

entrepreneurs. With CBDC payment, a decrease in CBDC cost kdc may lead to a higher
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loan rate ρ1 that could hurt the informative payment users. Entrepreneurs using informative

payment can be adversely affected by the rising loan rate. The central bank may need to

balance the welfare between the lender and borrowers and between the two types of payment

users.

6 Conclusion

In this paper, I study the potential macroeconomic implications of an anonymous CBDC

on bank stability and welfare in the lending market. The anonymous payment method can

preserve entrepreneurs’ privacy while substituting for the traditional, informative payment

method. The information available for the bank is relatively limited compared to the case

that the bank can better monitor and manage the loans when the entrepreneurs can only

have an exclusive arrangement with the bank. The anonymous CBDC payment serves as

a commitment device and allows borrowers to fully capture their non-pledgeable gains. It

enforces more risk sharing between the bank and entrepreneurs, leading to lower bank returns

and less demand for lending with a higher anonymous loan rate. These results hold even

when the information loss does not hamper banks’ ability to monitor the loans. The bank

that balances liquidity shortage and loan return will optimally respond by choosing a more

liquid portfolio, eventually contributing to a more stable bank. This result is contrary to the

concern that the loss of information would increase banks’ risks and make them unstable.

Introducing anonymous payment favors the entrepreneurs while decreasing the bank de-

positors’ welfare. Interestingly, entrepreneurs who value their privacy less can also benefit

from introducing CBDC while continuing to use the informative payment. This is because

the loan rate of the informative CBDC payment becomes lower as the aggregate demand

decreases. The anonymous and informative loan rates are inter-connected, so the central

bank can use the CBDC to influence the bank’s portfolio choice and management costs. In

this sense, the central bank should also be cautious in managing the payment information

that flows within the CBDC payment system.

22



References

Aghion, Philippe and Patrick Bolton (1992) “An incomplete contracts approach to financial
contracting,” The review of economic Studies, 59 (3), 473–494.

Andolfatto, David, Aleksander Berentsen, and Christopher Waller (2014) “Optimal disclo-
sure policy and undue diligence,” Journal of Economic Theory, 149, 128–152.
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Appendix: Proofs

I begin by showing a threshold π̄, above which the optimal choice of α(π) = 1 so the bank
runs out of liquidity.

In the bank’s problem, after the random π is realized (call it ex-post), the bank makes
the state-contingent offer {c1(π), c2(π), α(π)} based on the realized π. Denote the bank’s
lending return as Rb. For now, we simply take Rb as given and ignore Ii. For a given γn, the
ex-post problem can be expressed as:

max
c1(π),c2(π),α(π)

π · ln(c1(π)) + (1− π) · ln(c2(π))

s.t. πc1(π) = α(π)γn

(1− π)c2(π) ≤ γn − α(π)γn + (1− γn)Rb

0 ≤ α(π)

α(π) ≤ 1

Denote the constraints’ corresponding multipliers as λ1 to λ4. Take the first orders:

π

c1(π)
− πλ1 = 0

1− π
c2(π)

− πλ2 = 0

λ1γn − λ2γn + λ3 − λ4 = 0

Note α(π) 6= 0 otherwise c1(π) = 0, which cannot be the solution. If 0 < α(π) < 1, then
λ3 = λ4 = 0 and λ1 = λ2 = 1

c1(π)
= 1

c2(π)
. From the constraints, we have:

c1(π) = c2(π) = γn + (1− γn)Rb

π[γn + (1− γn)Rb] = α(π)γn

Recall that the second condition should also satisfy α(π) ≤ 1, which depends on γn and π.

The threshold π̄ is defined as α = 1 = π̄[γn+(1−γn)]Rb
γn

, or equivalently π̄ = γn
γn+(1−γn)Rb

. For

those realized π > π̄, α(π) = 1. And α(π) = 1 is the third scenario with:

πc1(π) = γn

(1− π)c2(π) = (1− γn)Rb

In sum, once π is realized, there is a threshold π̄ = γn
γn+(1−γn)Rb

that if π ≤ π̄, c1(π) =

c2(π) = γn + (1− γn)Rb; if π > π̄, then c1(π) = γn
π

, c2(π) = (1−γn)Rb
1−π and the bank runs out

of liquidity.
These ex-post solutions are conditioned on π and γn. Now we look at the bank’s ex-ante
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choice of γn. The bank’s optimization problem can be written as:

max
γn

∫ π̄

0

ln(γn + (1− γn)Rb) · f(π)dπ +

∫ 1

π̄

[πln(
γn
π

) + (1− π)ln(
(1− γn)Rb

1− π
)]f(π)dπ

s.t. π̄ =
γn

γn + (1− γn)Rb

0 ≤ γn

γn ≤ 1

I denote the value of depositors’ expected utilities in the maximization problem as V (γ,Rb).
These discussions above help to show the proofs of Propositions.

Proposition 1. There exists a privacy gain level b∗ > 0 such that for bi > b∗, the
entrepreneur’s project should always be funded to mature in period 2. When kdc = k̄, b∗ < k̄.

Proof. We can use kdc = k̄ to illustrate. Suppose CBDC payment option does not incur
any additional management cost so kdc = k̄ is a constant. The planner chooses γ, ρ, Ii to
maximize social welfare. We can express the depositors’ welfare as V (γ,Rb), so:

max
ρ∗,γ∗,Ii

∫ 1

0

[δ2(R− ρ∗) + Ii · bi]dbi + V (γ,Rb)

s.t. π̄ =
1

1 + ( 1
γ
− 1)Rb

Rb = δρ− k̄ · Ii

For certain decision Ii, we can see the marginal gain by allowing project i to mature (after
knowing its future return) is bi.
The cost of allowing an unprofitable project to mature comes solely from Rb. So, the marginal
cost can be expressed as:

∂V (Ii)
∂Ii

=
∂V (Ii)
∂Rb

· ∂Rb

∂Ii

= (

∫ π̄

0

1− γ∗

γ∗ + (1− γ∗)Rb

dπ +

∫ 1

π̄

1− π
Rb

dπ) · k̄

< (

∫ π̄

0

1

Rb

dπ +

∫ 1

π̄

1

Rb

dπ) · k̄

=
1

Rb

· k̄

< k̄

So the marginal project with Ii = 1, i.e., the entrepreneur has privacy gain b∗ and is
allowed to continue the project satisfies:

(1− δ)b∗ − ∂V (Ii)
∂Ii

= 0
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should also satisfy b∗ < k̄. In other words, for those bi ≥ b∗ = k̄, the marginal gain is larger
than the marginal costs and should be allowed to mature even if the project is unprofitable
for the bank.

Note when kdc can be larger than k̄, the same mechanism works. The difference is that
the threshold b∗ is larger because the bank’s cost will be higher. Still, a smaller fraction of
entrepreneurs should always be allowed to have their projects mature.

Now I jointly show Lemma 1, Propositions 2, and Proposition 3 below.

Proof. I start by showing the bank will always terminate unprofitable loans. When the bank
observes the loan generates a zero return, not terminating it contributes to a lower return
R′ < R due to the management cost. Let the optimal choice of cash reserve as γ∗, we can
use the envelope theorem to get:

dV (γ∗(Rb), Rb)

dRb

=
∂V (Rb)

∂Rb

=

∫ π̄

0

1− γ∗

γ∗ + (1− γ∗)Rb

dπ +

∫ 1

π̄

1− π
Rb

dπ > 0

In which π̄ = γ∗

γ∗+(1−γ∗)Rb
. So the bank will always terminate unprofitable loans to achieve

higher expected utilities for depositors. This result delivers Lemma 1.
Then, I turn to find the optimal γ∗. First, notice γn 6= 0 otherwise c1(π) = 0, which

cannot be the solution. Second, if 0 < γn < 1, we can get the first order condition by
applying the Leibniz integral rule:

dV (γ)

dγ
=

Rb

(γ + (1− γ)Rb)2
· ln(γ + (1− γ)Rb) · f(π̄) +

∫ π̄

0

1−Rb

γ + (1− γ)Rb

f(π)dπ

− Rb

(γ + (1− γ)Rb)2
· [π̄ln(

γ

π̄
) + (1− π̄)ln

(1− γ)Rb

1− π̄
] · f(π̄) +

∫ 1

π̄

[
π

γ
− 1− π

1− γ
]f(π)dπ

The first line is the derivative of the first integral and the second line comes from the second
integral of the objective function. In addition, the first term in the first line cancels out the
first part of the second line with π̄ = γ

γ+(1−γ)Rb
. So we can further simplify the equation:

dV (γ)

dγ
=

∫ π̄

0

1−Rb

γ + (1− γ)Rb

f(π)dπ +

∫ 1

π̄

π − γ
γ(1− γ)

f(π)dπ

=

∫ π̄

0

1−R
γ + (1− γ)Rb

f(π)dπ +
π − γ
γ(1− γ)

F (π)|1π̄ −
∫ 1

π̄

1

γ(1− γ)
F (π)dπ

=

∫ π̄

0

1−Rb

γ + (1− γ)Rb

f(π)dπ +
1

γ
−

γ
γ+(1−γ)Rb

− γ
γ(1− γ)

F (π̄)−
∫ 1

π̄

1

γ(1− γ)
F (π)dπ

=
1

γ
−

∫ 1

π̄

1

γ(1− γ)
F (π)dπ

In the second line, I apply integral by parts for the second term of the equation. In the third
line, the first and the last terms cancel out. Imposing dV (γ)

dγ
= 0, we get equation (8) as in
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the main content:

1− γ =

∫ 1

π̄

F (π)dπ (22)

It solves for the bank’s choice of γ for a given investment return Rb that the representative
bank takes as given.

We use (22) and the market clearing condition to find the equilibrium solution of {γ∗, ρ∗}.
Imposing F (π) = π and replacing Rb using the clearing condition (replace Rb with project’s
return R), we can find the equation that pins down the equilibrium γ∗ as:

1− γ =
1

2
− 1

2
{ 1

1 + ( 1
γ
− 1)[C − 1

δ
(1− γ)]

}2 (23)

In which C = δR − δk for simplifying expression. Denote the left-hand-side as g0(γ) and
the right-hand-side as g1(γ). I can show g1(γ) is decreasing and concave when γ ∈ [1

2
, 1].

Through some calculations, we can find the first and second order of g1(γ) are:

dg1(γ)

dγ
= − 1

γ2
(C − 1

δ
+

1

δ
γ2) · { 1

1 + ( 1
γ
− 1)[C − 1

δ
(1− γ)]

}3

d2g1(γ)

d2γ
≡ [−3 + 2(1− γ)] · (C − 1

δ
)2 − 3

δ2
γ4 − 2γ

δ
[4γ − δ − 1] · (C − 1

δ
)

When C > 1
δ
, g1(γ) decreases in γ. Intuitively, this condition requires the expected return

on bank’s investment (entrepreneurs’ project) should be larger than one. In addition, note
the optimal γ∗ ∈ (1

2
, 1] so the last term of the second order function is non-negative whenever

δ ∈ [0, 1]. Thus, d2g1(γ)
d2γ

< 0 holds and g1(γ) is decreasing and concave in γ ∈ [1
2
, 1].

Now we can see g1(γ → 0) = 1
2

and g1(1) = 0. As γ → 1, the slope dg1(γ)
dγ
→ −C and will

be smaller than −1 whenever C > 1, which is ensured by C > 1
δ
. Thus, a single crossing

interior point γ∗ solves equation (23). The figure below shows this result.
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Figure 2. Optimal γn

The properties of g1(γ) also suggest that the corner choice γ = 1 cannot be the solution to
the maximization problem. For those γ ∈ (γ∗, 1), we have equation (23)’s the left-hand-side

smaller than the right-hand-side or equivalently, dV (γ)
dγ

< 0 on equilibrium as captured by
22. When γ = 1, the bank does not lend and π̄ = 1. However, no lending generates lower
welfare than interior γ∗ because dV (γ)

dγ
< 0 holds.

Lastly, when R increases the curve g1(γ) shifts upward. So the solution γ∗ decreases.
From the equation (8), the threshold π̄ should also increase for the equality to hold.

Proposition 4. As marginal information loss β is higher, a larger fraction of borrowers
will stay using debit card payment. The equilibrium management cost k∗dc increases.

Proof. The equilibrium fraction of debit card payment user b̄∗ can be expressed as:

b̄∗ =
β + (1

δ
− 1)δk̄

β + (1
δ
− 1)

= 1−
(1
δ
− 1)(1− δk̄)

β + (1
δ
− 1)

It can be shown that db̄∗

dβ
> 0. In addition, the equilibrium CBDC management cost k∗dc =
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k̄ + β(1− b̄∗). Take the derivative to β:

dk∗dc
dβ

= (1− b̄∗)− βdb̄
∗

dβ

=
(1
δ
− 1)(1− δk̄)

β + (1
δ
− 1)

− β

β + (1
δ
− 1)

·
(1
δ
− 1)(1− δk̄)

β + (1
δ
− 1)

=
(1
δ
− 1)2(1− δ)k̄
β + (1

δ
− 1)

> 0

So that as β increases, both b̄∗ and k∗dc increase at the equilibrium.

Lastly, we can compare the stability result with and without CBDC. Following the same
procedure in the proofs of Proposition 2, comparing the liquidity holdings γ in the same
figure is easy. The curve g2 is the right-hand-side of condition (18).

Figure 2. Optimal γn

It is easy to see the bank chooses a lower γ due to risk-sharing with the CBDC en-
trepreneurs. This provides the result of Proposition 5.

We can further draw the demand and supply curves. With CBDC, the aggregate demand
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is:

AD =

∫ b̄

0

δ2(R− ρ1) +

∫ 1

b̄

δ2(R− ρ0)

= δ2R− [

∫ b̄

0

(δ2ρ0 − (1− δ)b̄) +

∫ 1

b̄

δ2(R− ρ0)]

= δ2(R− ρ0) + (1− δ)b̄2

= δ2(R− ρ1)− (1− δ)(1− b̄)b̄

The second line uses the clearing condition (14) to replace ρ0. The last line is the expression
in ρ1 to compare the debit rates with and without CBDC later.

The FOC of γ gives the aggregate supply of funds, which equals to 1−γ, and the condition
is:

1− γ =

∫ 1

1

1+( 1γ−1)Rb

F (π)dπ (24)

In which Rb = θRb1 + (1 − θ)Rb0 = Rb1 = δρ1 − δk̄ = Rb0 = δρ0 − kdc. This holds as the
return is the same from either type of lending. Notice that the equilibrium θ can be backed
out from condition (17), although it is canceled out in the expressions.
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